Shisrut S.

Data Scientist

Shisrut ist ein Data Scientist mit sieben Jahren Berufserfahrung, der sich auf maschinelles Lernen, Deep Learning, Zeitreihenprognosen und Optimierungstechniken spezialisiert hat.

Er beherrscht Python, TensorFlow, Scikit-learn und fortgeschrittene ML-Frameworks und integriert nahtlos prädiktive Modellierung in die reale Entscheidungsfindung. Sein Fachwissen liegt in der Kombination von ML-gesteuerten Prognosen mit Optimierungsstrategien zur Maximierung der Geschäftsauswirkungen.

Eine seiner bemerkenswertesten Errungenschaften ist die Optimierung von Homepage-Kachelanordnungen mit einem zweistufigen ML-Framework. Durch den Einsatz von Zeitreihenprognosen und Reinforcement Learning konnte er die Anzahl der Besuche auf der Produktseite und der "In die Tasche"-Aktionen erheblich steigern. Dieses selbstoptimierende System passt sich in Echtzeit an und gewährleistet Skalierbarkeit und langfristigen Erfolg.

Hauptkompetenz

  • Python
    Python 7 Jahre
  • SAS
    SAS 5 Jahre
  • SQL
    SQL 7 Jahre

Andere Fähigkeiten

  • Matplotlib
    Matplotlib 3 Jahre
  • BeautifulSoup
    BeautifulSoup 2 Jahre
  • R (programming language)
    R (programming language) 1 Jahre
Shisrut

Shisrut S.

India

Erste Schritte

Ausgewählte Erfahrung

Beschäftigung

  • Lead Data Scientist

    Apple - 3 jahre

    • Designed and implemented a data-driven homepage tile optimization system, dynamically adjusting placements based on user engagement patterns;

    • Aggregated and analyzed time-series data on impressions, clicks, and "Add to Bag" actions to uncover user behavior trends;

    • Engineered advanced features (e.g., temporal trends, engagement metrics) to enhance the predictive accuracy of optimization models;

    • Developed and validated an XGBoost model to predict "Add to Bag" rates, using Mean Absolute Error (MAE) and R-squared for performance assessment;

    • Integrated Thompson Sampling (Multi-Armed Bandit) for real-time tile placement optimization, adapting dynamically to user interactions;

    • Automated the optimization process, ensuring continuous improvements without manual intervention.

    • Monitored and fine-tuned the model’s performance, achieving a 15% increase in "Add to Bag" actions and directly boosting revenue;

    Technologien:

    • Technologien:
    • Python Python
    • SQL SQL
    • Pandas Pandas
    • NumPy NumPy
  • Lead Data Scientitst

    Apple - 2 jahre

    • Led a team of data scientists to develop an unsupervised learning framework for visitor segmentation using Adobe Clickstream data;

    • Designed and operationalized a bi-weekly MLOps pipeline to automate data ingestion, feature engineering, model retraining, and performance monitoring;

    • Enhanced targeted marketing campaigns by implementing data-driven visitor segmentation, improving personalization and engagement;

    • Optimized marketing budget allocation through intelligent resource distribution, maximizing ROI;

    • Integrated segmentation insights into a conversational Tableau (ThoughtSpot) dashboard for real-time data accessibility, model governance, and strategic decision-making;

    • Improved conversion rates, A/B testing effectiveness, and marketing efficiency by enabling data-driven decision-making.

    Technologien:

    • Technologien:
    • Python Python
    • Machine Learning Machine Learning
    • MySQL MySQL
  • Senior Data Scientist

    CITI - 3 jahre

    • Led cross-functional collaboration with model development, deployment, monitoring, risk, and fair lending teams to ensure seamless ML model lifecycle management;

    • Managed a portfolio of 37 ML models in production, overseeing performance monitoring, recalibration, and compliance adherence;

    • Developed and automated MLOps pipelines, significantly reducing turnaround time (TAT) for model updates and deployments;

    • Conducted root cause analysis and model recalibration, improving performance transparency and regulatory compliance;

    • Implemented workforce optimization strategies, minimizing redundancies and improving operational efficiency;

    • Enhanced regulatory compliance and fair lending governance, ensuring model transparency and justifiable decision-making;

    • Designed data-driven storytelling and documentation frameworks, providing clear insights into model decisions for stakeholders.

    Technologien:

    • Technologien:
    • Python Python
    • SAS SAS
    • SQL SQL
    • Machine Learning Machine Learning
  • Data Scientist

    Ameriprise Financial - 2 jahre

    • Developed and deployed an Auto Fraud Detection System using NLP techniques and pre-trained models (BERT, GloVe) to analyze First Notice of Loss (FNOL) data and detect fraudulent claims;

    • Designed a multiclass claims triaging model to forecast claim urgency and litigation potential, optimizing resource allocation and response times;

    • Implemented fraud classification models with high accuracy, reducing financial losses and manual investigation efforts;

    • Predicted claim severity ($) to enable proactive fraud detection and investigation prioritization;

    • Integrated the system into the claims workflow, enhancing operational efficiency and reducing litigation costs;

    • Achieved quarterly savings of $250K by improving fraud detection and claims processing efficiency.

    Technologien:

    • Technologien:
    • Python Python
    • SAS SAS
    • SQL SQL
    • Machine Learning Machine Learning
  • Data Scientist

    Ameriprise Financial - 2 jahre

    • Developed classification models to predict customer responses to marketing campaigns and cross-selling initiatives, leveraging behavioral data, demographics, and engagement history;

    • Applied advanced ML techniques to refine audience segmentation, improving conversion rates and customer engagement;

    • Implemented MLOps pipelines to automate model development, deployment, monitoring, and recalibration for continuous optimization;

    • Designed real-time monitoring reports, providing insights into campaign performance, model robustness, and profitability (PnL tracking);

    • Optimized budget allocation strategies, ensuring marketing spend was maximized for ROI;

    • Established a structured monitoring system to track long-term model performance and campaign effectiveness.

    Technologien:

    • Technologien:
    • Python Python
    • SAS SAS
    • Data Science
    • Machine Learning Machine Learning
    • MySQL MySQL

Ausbildung

  • MSc.Data Science

    Birla Institute Of Technology · 2024 - 2025

  • BSc.Computer Science

    Vellore Institute Of Technology · 2013 - 2017

Finden Sie Ihren nächsten Entwickler innerhalb von Tagen, nicht Monaten

In einem kurzen 25-minütigen Gespräch würden wir gerne:

  • Auf Ihren Bedarf bezüglich des Recruitments von Software-Entwicklern eingehen
  • Unseren Prozess vorstellen und somit wie wir Sie mit talentierten und geprüften Kandidaten aus unserem Netzwerk zusammenbringen können
  • Die nächsten Schritte besprechen, um den richtigen Kandidaten zu finden - oft in weniger als einer Woche

Unterhalten wir uns