Shisrut S.

Data Scientist

Shisrut est un scientifique de données avec sept ans d'expérience commerciale, spécialisé dans l'apprentissage automatique, l'apprentissage profond, la prévision des séries temporelles et les techniques d'optimisation.

Maîtrisant Python, TensorFlow, Scikit-learn et les frameworks ML avancés, il intègre de manière transparente la modélisation prédictive à la prise de décision dans le monde réel. Son expertise consiste à combiner les prévisions basées sur la ML avec des stratégies d'optimisation afin de maximiser l'impact sur l'entreprise.

L'une de ses réalisations les plus remarquables est l'optimisation de l'agencement des tuiles de la page d'accueil à l'aide d'un cadre ML à deux étapes. En s'appuyant sur les prévisions de séries temporelles et l'apprentissage par renforcement, il a considérablement augmenté le nombre de visites de pages de produits et d'actions d'ajout au sac. Ce système auto-optimisant s'adapte en temps réel, garantissant l'évolutivité et le succès à long terme.

Principale expertise

  • Python
    Python 7 ans
  • SAS
    SAS 5 ans
  • SQL
    SQL 7 ans

Autres compétences

  • Matplotlib
    Matplotlib 3 ans
  • BeautifulSoup
    BeautifulSoup 2 ans
  • R (programming language)
    R (programming language) 1 ans
Shisrut

Shisrut S.

India

Commencer

Expérience sélectionnée

Emploi

  • Lead Data Scientist

    Apple - 3 années

    • Designed and implemented a data-driven homepage tile optimization system, dynamically adjusting placements based on user engagement patterns;

    • Aggregated and analyzed time-series data on impressions, clicks, and "Add to Bag" actions to uncover user behavior trends;

    • Engineered advanced features (e.g., temporal trends, engagement metrics) to enhance the predictive accuracy of optimization models;

    • Developed and validated an XGBoost model to predict "Add to Bag" rates, using Mean Absolute Error (MAE) and R-squared for performance assessment;

    • Integrated Thompson Sampling (Multi-Armed Bandit) for real-time tile placement optimization, adapting dynamically to user interactions;

    • Automated the optimization process, ensuring continuous improvements without manual intervention.

    • Monitored and fine-tuned the model’s performance, achieving a 15% increase in "Add to Bag" actions and directly boosting revenue;

    Les technologies:

    • Les technologies:
    • Python Python
    • SQL SQL
    • Pandas Pandas
    • NumPy NumPy
  • Lead Data Scientitst

    Apple - 2 années

    • Led a team of data scientists to develop an unsupervised learning framework for visitor segmentation using Adobe Clickstream data;

    • Designed and operationalized a bi-weekly MLOps pipeline to automate data ingestion, feature engineering, model retraining, and performance monitoring;

    • Enhanced targeted marketing campaigns by implementing data-driven visitor segmentation, improving personalization and engagement;

    • Optimized marketing budget allocation through intelligent resource distribution, maximizing ROI;

    • Integrated segmentation insights into a conversational Tableau (ThoughtSpot) dashboard for real-time data accessibility, model governance, and strategic decision-making;

    • Improved conversion rates, A/B testing effectiveness, and marketing efficiency by enabling data-driven decision-making.

    Les technologies:

    • Les technologies:
    • Python Python
    • Machine Learning Machine Learning
    • MySQL MySQL
  • Senior Data Scientist

    CITI - 3 années

    • Led cross-functional collaboration with model development, deployment, monitoring, risk, and fair lending teams to ensure seamless ML model lifecycle management;

    • Managed a portfolio of 37 ML models in production, overseeing performance monitoring, recalibration, and compliance adherence;

    • Developed and automated MLOps pipelines, significantly reducing turnaround time (TAT) for model updates and deployments;

    • Conducted root cause analysis and model recalibration, improving performance transparency and regulatory compliance;

    • Implemented workforce optimization strategies, minimizing redundancies and improving operational efficiency;

    • Enhanced regulatory compliance and fair lending governance, ensuring model transparency and justifiable decision-making;

    • Designed data-driven storytelling and documentation frameworks, providing clear insights into model decisions for stakeholders.

    Les technologies:

    • Les technologies:
    • Python Python
    • SAS SAS
    • SQL SQL
    • Machine Learning Machine Learning
  • Data Scientist

    Ameriprise Financial - 2 années

    • Developed and deployed an Auto Fraud Detection System using NLP techniques and pre-trained models (BERT, GloVe) to analyze First Notice of Loss (FNOL) data and detect fraudulent claims;

    • Designed a multiclass claims triaging model to forecast claim urgency and litigation potential, optimizing resource allocation and response times;

    • Implemented fraud classification models with high accuracy, reducing financial losses and manual investigation efforts;

    • Predicted claim severity ($) to enable proactive fraud detection and investigation prioritization;

    • Integrated the system into the claims workflow, enhancing operational efficiency and reducing litigation costs;

    • Achieved quarterly savings of $250K by improving fraud detection and claims processing efficiency.

    Les technologies:

    • Les technologies:
    • Python Python
    • SAS SAS
    • SQL SQL
    • Machine Learning Machine Learning
  • Data Scientist

    Ameriprise Financial - 2 années

    • Developed classification models to predict customer responses to marketing campaigns and cross-selling initiatives, leveraging behavioral data, demographics, and engagement history;

    • Applied advanced ML techniques to refine audience segmentation, improving conversion rates and customer engagement;

    • Implemented MLOps pipelines to automate model development, deployment, monitoring, and recalibration for continuous optimization;

    • Designed real-time monitoring reports, providing insights into campaign performance, model robustness, and profitability (PnL tracking);

    • Optimized budget allocation strategies, ensuring marketing spend was maximized for ROI;

    • Established a structured monitoring system to track long-term model performance and campaign effectiveness.

    Les technologies:

    • Les technologies:
    • Python Python
    • SAS SAS
    • Data Science
    • Machine Learning Machine Learning
    • MySQL MySQL

Éducation

  • Maîtrise ès sciencesData Science

    Birla Institute Of Technology · 2024 - 2025

  • License ès sciencesComputer Science

    Vellore Institute Of Technology · 2013 - 2017

Trouvez votre prochain développeur en quelques jours et non sur plusieurs mois

Dans un court appel de 25 minutes, nous voulons:

  • Comprendre vos besoins en développement
  • Vous expliquez comment nous allons vous mettre en relation avec le développeur le mieux qualifié pour votre projet, sélectionné avec soin
  • Vous indiquez nos prochaines démarches afin de vous trouver le meilleur développeur, souvent en moins d'une semaine

Contactez-nous