Shisrut S.
Data Scientist
Shisrut is een Data Scientist met zeven jaar commerciële ervaring, gespecialiseerd in Machine Learning, Deep Learning, Time Series Forecasting en optimalisatietechnieken.
Hij is bedreven in Python, TensorFlow, Scikit-learn en geavanceerde ML-frameworks en integreert voorspellende modellen naadloos met besluitvorming in de echte wereld. Zijn expertise ligt in het combineren van ML-gestuurde voorspellingen met optimalisatiestrategieën om de impact op het bedrijf te maximaliseren.
Een van zijn meest opmerkelijke prestaties is het optimaliseren van Homepage Tile Arrangements met behulp van een Two-Stage ML Framework. Door gebruik te maken van voorspellingen op basis van tijdreeksen en leren op basis van versterking, kon hij het aantal bezoeken aan productpagina's en acties voor toevoegen aan tas aanzienlijk verhogen. Dit zelfoptimaliserende systeem past zich in real-time aan, waardoor schaalbaarheid en succes op de lange termijn gegarandeerd zijn.
Hoofd expertise
- Python 7 jaar
- SAS 5 jaar
- SQL 7 jaar
Andere vaardigheden
- Matplotlib 3 jaar
- BeautifulSoup 2 jaar
- R (programming language) 1 jaar
Geselecteerde ervaring
Dienstverband
Lead Data Scientist
Apple - 3 jaar
-
Designed and implemented a data-driven homepage tile optimization system, dynamically adjusting placements based on user engagement patterns;
-
Aggregated and analyzed time-series data on impressions, clicks, and "Add to Bag" actions to uncover user behavior trends;
-
Engineered advanced features (e.g., temporal trends, engagement metrics) to enhance the predictive accuracy of optimization models;
-
Developed and validated an XGBoost model to predict "Add to Bag" rates, using Mean Absolute Error (MAE) and R-squared for performance assessment;
-
Integrated Thompson Sampling (Multi-Armed Bandit) for real-time tile placement optimization, adapting dynamically to user interactions;
-
Automated the optimization process, ensuring continuous improvements without manual intervention.
-
Monitored and fine-tuned the model’s performance, achieving a 15% increase in "Add to Bag" actions and directly boosting revenue;
Technologieën:
- Technologieën:
Python
SQL
Pandas
NumPy
-
Lead Data Scientitst
Apple - 2 jaar
-
Led a team of data scientists to develop an unsupervised learning framework for visitor segmentation using Adobe Clickstream data;
-
Designed and operationalized a bi-weekly MLOps pipeline to automate data ingestion, feature engineering, model retraining, and performance monitoring;
-
Enhanced targeted marketing campaigns by implementing data-driven visitor segmentation, improving personalization and engagement;
-
Optimized marketing budget allocation through intelligent resource distribution, maximizing ROI;
-
Integrated segmentation insights into a conversational Tableau (ThoughtSpot) dashboard for real-time data accessibility, model governance, and strategic decision-making;
-
Improved conversion rates, A/B testing effectiveness, and marketing efficiency by enabling data-driven decision-making.
Technologieën:
- Technologieën:
Python
Machine Learning
MySQL
-
Senior Data Scientist
CITI - 3 jaar
-
Led cross-functional collaboration with model development, deployment, monitoring, risk, and fair lending teams to ensure seamless ML model lifecycle management;
-
Managed a portfolio of 37 ML models in production, overseeing performance monitoring, recalibration, and compliance adherence;
-
Developed and automated MLOps pipelines, significantly reducing turnaround time (TAT) for model updates and deployments;
-
Conducted root cause analysis and model recalibration, improving performance transparency and regulatory compliance;
-
Implemented workforce optimization strategies, minimizing redundancies and improving operational efficiency;
-
Enhanced regulatory compliance and fair lending governance, ensuring model transparency and justifiable decision-making;
-
Designed data-driven storytelling and documentation frameworks, providing clear insights into model decisions for stakeholders.
Technologieën:
- Technologieën:
Python
SAS
SQL
Machine Learning
-
Data Scientist
Ameriprise Financial - 2 jaar
-
Developed and deployed an Auto Fraud Detection System using NLP techniques and pre-trained models (BERT, GloVe) to analyze First Notice of Loss (FNOL) data and detect fraudulent claims;
-
Designed a multiclass claims triaging model to forecast claim urgency and litigation potential, optimizing resource allocation and response times;
-
Implemented fraud classification models with high accuracy, reducing financial losses and manual investigation efforts;
-
Predicted claim severity ($) to enable proactive fraud detection and investigation prioritization;
-
Integrated the system into the claims workflow, enhancing operational efficiency and reducing litigation costs;
-
Achieved quarterly savings of $250K by improving fraud detection and claims processing efficiency.
Technologieën:
- Technologieën:
Python
SAS
SQL
Machine Learning
-
Data Scientist
Ameriprise Financial - 2 jaar
-
Developed classification models to predict customer responses to marketing campaigns and cross-selling initiatives, leveraging behavioral data, demographics, and engagement history;
-
Applied advanced ML techniques to refine audience segmentation, improving conversion rates and customer engagement;
-
Implemented MLOps pipelines to automate model development, deployment, monitoring, and recalibration for continuous optimization;
-
Designed real-time monitoring reports, providing insights into campaign performance, model robustness, and profitability (PnL tracking);
-
Optimized budget allocation strategies, ensuring marketing spend was maximized for ROI;
-
Established a structured monitoring system to track long-term model performance and campaign effectiveness.
Technologieën:
- Technologieën:
Python
SAS
- Data Science
Machine Learning
MySQL
-
Educatie
MSc.Data Science
Birla Institute Of Technology · 2024 - 2025
BSc.Computer Science
Vellore Institute Of Technology · 2013 - 2017
Vind jouw volgende ontwikkelaar binnen enkele dagen, niet maanden
In een kort gesprek van 25 minuten:
- gaan we in op wat je nodig hebt om je product te ontwikkelen;
- Ons proces uitleggen om u te matchen met gekwalificeerde, doorgelichte ontwikkelaars uit ons netwerk
- delen we de stappen met je om de juiste match te vinden, vaak al binnen een week.