Gopal G.

Data Engineer

Gopal er en dataingeniør med over åtte års erfaring i regulerte sektorer som bilindustri, teknologi og energi. Han er enestående innen GCP, Azure, AWS og Snowflake, med ekspertise i full livssyklusutvikling, datamodellering, databasearkitektur og ytelsesoptimalisering.

Hans stolteste prestasjoner inkluderer å lage og optimalisere ETL/ELT-pipeliner på tvers av multisky-miljøer. Gopals Google Cloud, AWS, Microsoft Azure og Snowflake sertifiseringer fremhever hans forpliktelse til kontinuerlig læring og profesjonell dyktighet.

Han har en mastergrad i datateknikk.

Hovedekspertise
  • Fact Data Modeling 8 år
  • ETL
    ETL 8 år
  • Unix shell 7 år
Andre kunnskaper
  • Pandas
    Pandas 4 år
  • MySQL
    MySQL 4 år
  • Apache ZooKeeper
    Apache ZooKeeper 4 år
Gopal
Gopal G.

United Kingdom

Kom i gang

Utvalgt opplevelse

Arbeidserfaring

  • Data Engineer

    Nissan Motor Corporation - 1 year 2 months

    • Designing and implementing efficient and scalable data pipelines on Google Cloud Platform (GCP) to collect, process, and transform raw data into usable formats for analysis and consumption;

    • Leading and managing offshore teams to successfully implement various data engineering tasks, ensuring alignment with project goals and maintaining high-quality standards through regular communication, clear documentation, and effective task delegation;

    • Overseeing governance and compliance of data stored in Big Query, ensuring adherence to UK and EU GDPR regulations;

    • Conducting Data Privacy Impact Assessments (DPIA) for various projects at Nissan UK Limited and implementing necessary measures to mitigate or reduce risks;

    • Building and maintaining data warehouses, data lakes, and data lake houses on GCP using services like Big Query, Google Cloud Storage (GCS), and Bigtable;

    • Integrating data from various sources into GCP using services like Cloud Storage, Cloud Pub/Sub, and Cloud SQL;

    • Implementing proper data governance and security measures using GCP Identity and Access Management (IAM) and Data Loss Prevention (DLP) for compliance;

    • Building data pipelines using Google Dataflow to handle large volumes of data efficiently;

    • Implementing ETL/ELT processes to extract data from various sources and load them into data warehouses or data lakes;

    • Developing streaming pipelines for real-time data ingestion utilizing Kafka and Kafka Connect;

    • Implementing Python-based transformations and Big Query procedures, orchestrating their execution seamlessly with Google Cloud Composer;

    • Engineering transformations using Apache Beam, optimized for peak performance on Google DataProc clusters.

    Teknologier:

    • Teknologier:
    • Fact Data Modeling
    • ETL ETL
    • Unix shell
    • Performance Testing
    • Unit Testing
    • AWS S3 AWS S3
    • Data Analytics
    • Looker Looker
    • Snowflake Snowflake
    • BigQuery BigQuery
    • Pandas Pandas
    • MySQL MySQL
    • Data Modeling
    • Database testing
    • Apache ZooKeeper Apache ZooKeeper
    • AWS Athena
    • Redshift Redshift
    • Python Python
    • SQL SQL
    • Apache Kafka Apache Kafka
    • Apache Airflow Apache Airflow
    • Apache Spark Apache Spark
    • Hadoop Hadoop
    • Google Cloud Google Cloud
    • Data Engineering
  • Lead Data Engineer

    Technovert - 2 years 7 months

    • Developing ETL processes using Python and SQL to transform raw data into usable formats and load them into Big Query for analysis;

    • Building and architecting multiple data pipelines, managing end-to-end ETL and ELT processes for data ingestion and transformation in GCP, and coordinating tasks among the team;

    • Designing and implementing data pipelines using GCP services such as Dataflow, Dataproc, and Pub/Sub;

    • Migrating Oracle DSR to Big Query using Data Proc, Python, Airflow, and Looker;

    • Designing and developing a Python ingestion framework to load data from various source systems, including AR modules, inventory modules, files, and web services, into Big Query;

    • Developing pipelines to load data from customer-placed manual files in Google Drive to GCS and subsequently to Big Query using Big Query stored procedures;

    • Participating in code reviews and contributing to the development of best practices for data engineering on GCP;

    • Implementing data security and access controls using GCP's Identity and Access Management (IAM) and Cloud Security Command Centre.

    Teknologier:

    • Teknologier:
    • Databricks Databricks
    • Fact Data Modeling
    • ETL ETL
    • Unix shell
    • Performance Testing
    • Unit Testing
    • AWS S3 AWS S3
    • Oracle Oracle
    • Salesforce Salesforce
    • Data Analytics
    • Microsoft Power BI Microsoft Power BI
    • Snowflake Snowflake
    • BigQuery BigQuery
    • Pandas Pandas
    • MySQL MySQL
    • Data Modeling
    • Database testing
    • Apache ZooKeeper Apache ZooKeeper
    • Azure Azure
    • Azure Data Factory Azure Data Factory
    • Azure Synapse Azure Synapse
    • Python Python
    • SQL SQL
    • Apache Kafka Apache Kafka
    • Apache Airflow Apache Airflow
    • Apache Spark Apache Spark
    • Hadoop Hadoop
    • Google Cloud Google Cloud
    • Data Engineering
  • Data Engineer

    Accenture - 1 year 8 months

    • Designing and implementing Snowflake data warehouses, developing schemas, tables, and views optimized for performance and data accessibility;

    • Extracting data from Oracle databases, transforming it into CSV files, and loading these files into a Snowflake data warehouse stage hosted on AWS S3, ensuring secure and efficient data transfer and storage;

    • Creating and utilizing virtual warehouses in Snowflake according to business requirements, effectively tracking credit usage to enhance business insights and resource allocation;

    • Designing and configuring Snow pipe pipelines for seamless and near-real-time data loading, reducing manual intervention, and enhancing data freshness;

    • Parsing XML data and organizing it into structured Snowflake tables for efficient data storage and seamless data analysis;

    • Designing and implementing JSON data ingestion pipelines, leveraging Snowflake's capabilities to handle nested and complex JSON structures;

    • Designing and deploying Amazon Redshift clusters, optimizing schema design, distribution keys, and sort keys for optimal query performance;

    • Leveraging AWS Lambda functions and Step Functions to orchestrate ETL workflows, ensuring data accuracy and timely processing;

    • Creating and maintaining data visualizations and reports using Amazon Quick Sight to facilitate data analysis and insights.

    Teknologier:

    • Teknologier:
    • Fact Data Modeling
    • ETL ETL
    • Unix shell
    • Performance Testing
    • Unit Testing
    • Oracle Oracle
    • Data Analytics
    • Tableau Tableau
    • Data Modeling
    • Database testing
    • Python Python
    • SQL SQL
    • Data Engineering
  • BI Consultant, General Electric

    Tech Mahindra - 2 years 7 months

    • Designing and implementing Teradata packages to facilitate seamless data extraction, transformation, and loading (ETL) operations from diverse sources into data warehouses;

    • Developing interactive and dynamic reports using SSRS, providing stakeholders with timely and insightful data visualizations for informed decision-making;

    • Conducting rigorous data validation and quality checks to ensure the integrity and accuracy of processed data;

    • Optimizing ETL performance by employing advanced techniques, resulting in a 25% reduction in processing time;

    • Developing the ingestion strategy for loading data from multiple source systems to the operational layer in the data warehouse using Python, SQL, and stored procedures;

    • Understanding and developing design documents as deliverables for the project;

    • Implementing SCD Type 1 and Type 2 functionality and developing custom scripts in Teradata for integration and functionality development for different modules like Primavera P6 and Oracle Project module;

    • Managing and troubleshooting issues as a DWH analyst to ensure the smooth flow of business operations;

    • Preparing unit test cases and performing end-to-end integration testing;

    • Actively participating in design discussions and reviewing solutions;

    • Involving in peer review discussions on development before moving to higher environments;

    • Loading data from multiple files to a single target table using ODI variables;

    • Configuring and developing ETL mappings to load data from XML and complex (unstructured/semi-structured) files;

    • Utilizing Power BI to design and develop insightful visualizations and interactive dashboards, enabling data-driven decision-making for stakeholders and enhancing overall data engineering solutions.

    Teknologier:

    • Teknologier:
    • Fact Data Modeling
    • ETL ETL
    • Unix shell
    • Performance Testing
    • Unit Testing
    • Oracle Oracle
    • Data Analytics
    • Tableau Tableau
    • Data Modeling
    • SQL SQL
    • Data Engineering

Utdannelse

  • MSc.Computer Software Engineering

    University of West London · 2022 - 2023

  • MSc.Electronics and Communications

    Jawaharlal university of Hyderabad · 2012 - 2016

Finn din neste utvikler innen dager, ikke måneder

I løpet av en kort 25-minutters samtale ønsker vi å:

  • Forstå dine utviklingsbehov
  • Forklare prosessen vår der vi matcher deg med kvalifiserte, evaluerte utviklere fra vårt nettverk
  • Dele de neste stegene for å finne riktig match, ofte på mindre enn en uke

La oss ta en prat