Adrianna J.
Machine Learning Engineer
Adrianna er en erfaren maskinlæringsingeniør med syv års ekspertise inden for biovidenskab, rådgivning, forbrugerprodukter, sundhedspleje og telekommunikation.
Hun arbejder i øjeblikket som Technology Research Associate Principal og er dygtig til Python, TensorFlow, SPARQL, Stardog, AmpliGraph, Scikit-Learn, Docker, Streamlit og Git.
Adrianna har fire års specialiseret erfaring med grafisk maskinlæring og har især arbejdet i Accenture og ydet betydelige bidrag til projekter som CLARIFY, hvor hun ledede maskinlæringseksperimenter, gennemførte omfattende evalueringer og styrede implementeringen af løsninger til hospitaler.
Hun har en bachelor i kontrolteknik og robotteknologi og en dobbelt master i datavidenskab med en sidefag i iværksætteri fra EIT Digital, hvilket understreger hendes stærke tekniske fundament og iværksættertankegang.
Hovedekspertise
- Databricks 4 år
- OpenCV 5 år
- Computer Vision 5 år
Andre færdigheder
- CSV 9 år
- LaTeX 8 år
- Matplotlib 8 år
Udvalgt oplevelse
Beskæftigelse
Technology Research Associate Principal
Accenture - 4 flere år 8 måneder
-
Led the CLARIFY project to Accenture's Greater than Award Finals in the Inspiring Growth category, managing technology transfer for a neuro-symbolic query system on biomedical knowledge graphs;
-
Developed systems for relapse prediction and completed the TechStar 2023 leadership program;
-
Created a prototype REST API for AmpliGraph 2, demonstrated in client workshops;
-
Contributed to the EU Commission's CLARIFY H2020 project by delivering a client pilot, collaborating with 11 partners, and authoring deliverables;
-
Proposed four patent ideas, serving as lead author for two;
-
Co-supervised a PhD intern on interpretable Gene-Disease Prediction with GraphML;
-
Served as Virtual Buddy for a new joiner and participated in interview panels;
-
Presented at conferences such as Sketching in Hardware 2022, ESSEC Business School, and EIT Digital Alumni Annual Meeting on XAI and knowledge graphs;
-
Co-presented the COLING-22 Tutorial on Knowledge Graph Embeddings for NLP and authored a Medium Labs blog post on XAIl;
-
Conducted machine learning research on explainable AI for knowledge graph embedding models in precision medicine oncology applications;
-
Developed ExamplE, a novel explanation approach for link prediction, leading to a patent application and a Proof of Concept deployed at Hospital Puerta del Hierro for the CLARIFY H2020 project;
-
Designed experiments for lung cancer relapse prediction and contributed to the development of AmpliGraph 1.4;
-
Co-authored three deliverables to the EU Commission and submitted three patent ideas;
-
Led a human-based evaluation for a consumer goods project, resulting in client presentations and a conference paper;
-
Achieved runner-up status in the Accenture Hackathon: Al4Insurance and participated in the Eco Innovation Challenge;
-
Collaborated with the Human Insight Lab on various initiatives.
Teknologier:
- Teknologier:
- Databricks
- GNU Octave
- HTML / CSS
- JavaScript
- Data Modeling
- Material-UI
- ChromaDB
- SQL
- MongoDB
- Bash
- CircleCI
- CSS
- Clustering
- CSV
- D3.js
- Cuda
- Data Analytics
- Data Engineering
- React.js
- Unit Testing
- Swagger
- ChatGPT API
- LangChain
- Prompt Engineering
- REST API
- Git
- Python
- Docker
- Flask
- BeautifulSoup
- Pandas
- NumPy
- Team leading
- Data Science
- Pytest
- Machine Learning
- TensorFlow
- Open source
- Scikit-learn
- Streamlit
-
R&D Software Engineer
Nokia - 2 flere år 6 måneder
-
Began as a Working Student and received promotions, changing roles while working in a team responsible for developing a component test framework for 5G components (R&D Python Software Developer);
-
Collaborated on time synchronization in Base Transceiver Stations, with main tasks including web application development with machine learning support in Python, hosted in the cloud (R&D Embedded Software Engineer);
-
Contributed by writing new features in C++, fixing software bugs, unit-testing, documenting, and employing best practices of Object-Oriented Programming (OOP) and Test-Driven Development (TDD).
Teknologier:
- Teknologier:
- GNU Octave
- HTML / CSS
- JavaScript
- Jenkins
- SQL
- MongoDB
- Bash
- CSS
- Clustering
- CSV
- Cuda
- Data Analytics
- Data Engineering
- Unit Testing
- Django
- C++
- REST API
- Git
- Python
- Docker
- Flask
- Pandas
- NumPy
- Data Science
- Agile
- Pytest
- TensorFlow
- Embedded systems
-
Uddannelse
MSc.Data Science
Royal Institute of Technology (KTH) · 2018 - 2020
MSc.Data Science
Cote d'Azure University · 2017 - 2019
BSc.Control Engineering and Robotics
Wroclaw University of Technology · 2012 - 2016
Find din næste udvikler inden for få dage, ikke måneder
Book en 25-minutters samtale, hvor vi:
- udfører behovsafdækning med fokus på udviklingsopgaver
- Forklar vores proces, hvor vi matcher dig med kvalificerede, godkendte udviklere fra vores netværk
- beskriver de næste trin for at finde det perfekte match på få dage