Adrianna J.
Machine Learning Engineer
Adrianna is een ervaren Machine Learning Engineer met zeven jaar ervaring op het gebied van biowetenschappen, consulting, consumentenproducten, gezondheidszorg en telecommunicatie.
Momenteel werkt ze als Technology Research Associate Principal en is ze bedreven in Python, TensorFlow, SPARQL, Stardog, AmpliGraph, Scikit-Learn, Docker, Streamlit en Git.
Met vier jaar gespecialiseerde ervaring in graph machine learning heeft Adrianna met name bij Accenture gewerkt en belangrijke bijdragen geleverd aan projecten zoals CLARIFY, waar ze machine learning-experimenten leidde, uitgebreide evaluaties uitvoerde en de implementatie van oplossingen voor ziekenhuizen beheerde.
Ze heeft een bachelor in besturingstechniek en robotica en een dubbele master in datawetenschappen met een minor in ondernemerschap van EIT Digital, wat haar sterke technische basis en ondernemersmentaliteit onderstreept.
Hoofd expertise
- Databricks 4 jaar
- OpenCV 5 jaar
- Computer Vision 5 jaar
Andere vaardigheden
- CSV 9 jaar
- LaTeX 8 jaar
- Matplotlib 8 jaar
Geselecteerde ervaring
Dienstverband
Technology Research Associate Principal
Accenture - 4 jaar 8 maanden
-
Led the CLARIFY project to Accenture's Greater than Award Finals in the Inspiring Growth category, managing technology transfer for a neuro-symbolic query system on biomedical knowledge graphs;
-
Developed systems for relapse prediction and completed the TechStar 2023 leadership program;
-
Created a prototype REST API for AmpliGraph 2, demonstrated in client workshops;
-
Contributed to the EU Commission's CLARIFY H2020 project by delivering a client pilot, collaborating with 11 partners, and authoring deliverables;
-
Proposed four patent ideas, serving as lead author for two;
-
Co-supervised a PhD intern on interpretable Gene-Disease Prediction with GraphML;
-
Served as Virtual Buddy for a new joiner and participated in interview panels;
-
Presented at conferences such as Sketching in Hardware 2022, ESSEC Business School, and EIT Digital Alumni Annual Meeting on XAI and knowledge graphs;
-
Co-presented the COLING-22 Tutorial on Knowledge Graph Embeddings for NLP and authored a Medium Labs blog post on XAIl;
-
Conducted machine learning research on explainable AI for knowledge graph embedding models in precision medicine oncology applications;
-
Developed ExamplE, a novel explanation approach for link prediction, leading to a patent application and a Proof of Concept deployed at Hospital Puerta del Hierro for the CLARIFY H2020 project;
-
Designed experiments for lung cancer relapse prediction and contributed to the development of AmpliGraph 1.4;
-
Co-authored three deliverables to the EU Commission and submitted three patent ideas;
-
Led a human-based evaluation for a consumer goods project, resulting in client presentations and a conference paper;
-
Achieved runner-up status in the Accenture Hackathon: Al4Insurance and participated in the Eco Innovation Challenge;
-
Collaborated with the Human Insight Lab on various initiatives.
Technologieën:
- Technologieën:
- Databricks
- GNU Octave
- HTML / CSS
- JavaScript
- Data Modeling
- Material-UI
- ChromaDB
- SQL
- MongoDB
- Bash
- CircleCI
- CSS
- Clustering
- CSV
- D3.js
- Cuda
- Data Analytics
- Data Engineering
- React.js
- Unit Testing
- Swagger
- ChatGPT API
- LangChain
- Prompt Engineering
- REST API
- Git
- Python
- Docker
- Flask
- BeautifulSoup
- Pandas
- NumPy
- Team leading
- Data Science
- Pytest
- Machine Learning
- TensorFlow
- Open source
- Scikit-learn
- Streamlit
-
R&D Software Engineer
Nokia - 2 jaar 6 maanden
-
Began as a Working Student and received promotions, changing roles while working in a team responsible for developing a component test framework for 5G components (R&D Python Software Developer);
-
Collaborated on time synchronization in Base Transceiver Stations, with main tasks including web application development with machine learning support in Python, hosted in the cloud (R&D Embedded Software Engineer);
-
Contributed by writing new features in C++, fixing software bugs, unit-testing, documenting, and employing best practices of Object-Oriented Programming (OOP) and Test-Driven Development (TDD).
Technologieën:
- Technologieën:
- GNU Octave
- HTML / CSS
- JavaScript
- Jenkins
- SQL
- MongoDB
- Bash
- CSS
- Clustering
- CSV
- Cuda
- Data Analytics
- Data Engineering
- Unit Testing
- Django
- C++
- REST API
- Git
- Python
- Docker
- Flask
- Pandas
- NumPy
- Data Science
- Agile
- Pytest
- TensorFlow
- Embedded systems
-
Educatie
MSc.Data Science
Royal Institute of Technology (KTH) · 2018 - 2020
MSc.Data Science
Cote d'Azure University · 2017 - 2019
BSc.Control Engineering and Robotics
Wroclaw University of Technology · 2012 - 2016
Vind jouw volgende ontwikkelaar binnen enkele dagen, niet maanden
In een kort gesprek van 25 minuten:
- gaan we in op wat je nodig hebt om je product te ontwikkelen;
- Ons proces uitleggen om u te matchen met gekwalificeerde, doorgelichte ontwikkelaars uit ons netwerk
- delen we de stappen met je om de juiste match te vinden, vaak al binnen een week.