Adrianna J.
Machine Learning Engineer
Adrianna er en erfaren Machine Learning Engineer med syv års kompetanse innen livsvitenskap, rådgivning, forbruksvarer, helsevesen og telekommunikasjon.
For tiden jobber hun som Technology Research Associate Principal og er dyktig i Python, TensorFlow, SPARQL, Stardog, AmpliGraph, Scikit-Learn, Docker, Streamlit og Git.
Med fire års spesialisert erfaring innen grafmaskinlæring har Adrianna, som jobbet i Accenture, gitt betydelige bidrag til prosjekter som CLARIFY, hvor hun ledet maskinlæringseksperimenter, gjennomførte omfattende evalueringer, og administrerte distribusjonen av løsninger til sykehus.
Hun har en bachelorgrad i Control Engineering og Robotics, samt en dobbel mastergrad i Data Science med et sidefag i entreprenørskap fra EIT Digital, noe som understreker hennes sterke tekniske grunnlag og entreprenørånd.
Hovedekspertise
- Databricks 4 år
- OpenCV 5 år
- Computer Vision 5 år
Andre kunnskaper
- CSV 9 år
- LaTeX 8 år
- Matplotlib 8 år
Utvalgt opplevelse
Arbeidserfaring
Technology Research Associate Principal
Accenture - 4 years 9 months
-
Led the CLARIFY project to Accenture's Greater than Award Finals in the Inspiring Growth category, managing technology transfer for a neuro-symbolic query system on biomedical knowledge graphs;
-
Developed systems for relapse prediction and completed the TechStar 2023 leadership program;
-
Created a prototype REST API for AmpliGraph 2, demonstrated in client workshops;
-
Contributed to the EU Commission's CLARIFY H2020 project by delivering a client pilot, collaborating with 11 partners, and authoring deliverables;
-
Proposed four patent ideas, serving as lead author for two;
-
Co-supervised a PhD intern on interpretable Gene-Disease Prediction with GraphML;
-
Served as Virtual Buddy for a new joiner and participated in interview panels;
-
Presented at conferences such as Sketching in Hardware 2022, ESSEC Business School, and EIT Digital Alumni Annual Meeting on XAI and knowledge graphs;
-
Co-presented the COLING-22 Tutorial on Knowledge Graph Embeddings for NLP and authored a Medium Labs blog post on XAIl;
-
Conducted machine learning research on explainable AI for knowledge graph embedding models in precision medicine oncology applications;
-
Developed ExamplE, a novel explanation approach for link prediction, leading to a patent application and a Proof of Concept deployed at Hospital Puerta del Hierro for the CLARIFY H2020 project;
-
Designed experiments for lung cancer relapse prediction and contributed to the development of AmpliGraph 1.4;
-
Co-authored three deliverables to the EU Commission and submitted three patent ideas;
-
Led a human-based evaluation for a consumer goods project, resulting in client presentations and a conference paper;
-
Achieved runner-up status in the Accenture Hackathon: Al4Insurance and participated in the Eco Innovation Challenge;
-
Collaborated with the Human Insight Lab on various initiatives.
Teknologier:
- Teknologier:
Databricks
GNU Octave
- HTML / CSS
JavaScript
- Data Modeling
Material-UI
ChromaDB
SQL
MongoDB
Bash
CircleCI
CSS
- Clustering
- CSV
D3.js
Cuda
- Data Analytics
- Data Engineering
React.js
- Unit Testing
Swagger
ChatGPT API
LangChain
- Prompt Engineering
REST API
Git
Python
Docker
Flask
BeautifulSoup
Pandas
NumPy
- Team leading
- Data Science
Pytest
Machine Learning
TensorFlow
Open source
Scikit-learn
Streamlit
-
R&D Software Engineer
Nokia - 2 years 6 months
-
Began as a Working Student and received promotions, changing roles while working in a team responsible for developing a component test framework for 5G components (R&D Python Software Developer);
-
Collaborated on time synchronization in Base Transceiver Stations, with main tasks including web application development with machine learning support in Python, hosted in the cloud (R&D Embedded Software Engineer);
-
Contributed by writing new features in C++, fixing software bugs, unit-testing, documenting, and employing best practices of Object-Oriented Programming (OOP) and Test-Driven Development (TDD).
Teknologier:
- Teknologier:
GNU Octave
- HTML / CSS
JavaScript
Jenkins
SQL
MongoDB
Bash
CSS
- Clustering
- CSV
Cuda
- Data Analytics
- Data Engineering
- Unit Testing
Django
C++
REST API
Git
Python
Docker
Flask
Pandas
NumPy
- Data Science
Agile
Pytest
TensorFlow
- Embedded systems
-
Utdannelse
MSc.Data Science
Royal Institute of Technology (KTH) · 2018 - 2020
MSc.Data Science
Cote d'Azure University · 2017 - 2019
BSc.Control Engineering and Robotics
Wroclaw University of Technology · 2012 - 2016
Finn din neste utvikler innen dager, ikke måneder
I løpet av en kort 25-minutters samtale ønsker vi å:
- Forstå dine utviklingsbehov
- Forklare prosessen vår der vi matcher deg med kvalifiserte, evaluerte utviklere fra vårt nettverk
- Dele de neste stegene for å finne riktig match, ofte på mindre enn en uke