Adrianna J.
Machine Learning Engineer
Adrianna ist eine erfahrene Entwicklerin für maschinelles Lernen mit sieben Jahren Erfahrung in den Bereichen Biowissenschaften, Beratung, Konsumgüter, Gesundheitswesen und Telekommunikation.
Derzeit arbeitet sie als Technology Research Associate Principal und verfügt über Kenntnisse in Python, TensorFlow, SPARQL, Stardog, AmpliGraph, Scikit-Learn, Docker, Streamlit und Git.
Mit vier Jahren spezialisierter Erfahrung im Bereich des maschinellen Lernens von Graphen hat Adrianna wichtige Beiträge zu Projekten wie CLARIFY geleistet, wo sie Experimente zum maschinellen Lernen leitete, umfassende Bewertungen durchführte und die Bereitstellung von Lösungen für Krankenhäuser verwaltete.
Sie hat einen Bachelor-Abschluss in Steuerungstechnik und Robotik sowie einen doppelten Master-Abschluss in Data Science mit dem Nebenfach Entrepreneurship von EIT Digital, was ihr starkes technisches Fundament und ihre unternehmerische Denkweise unterstreicht.
Hauptkompetenz
- LaTeX 8 Jahre
- Databricks 4 Jahre
- GNU Octave 5 Jahre
Andere Fähigkeiten
- Matlab 6 Jahre
- REST API 6 Jahre
- jQuery 5 Jahre
Ausgewählte Erfahrung
Beschäftigung
Technology Research Associate Principal
Accenture - 4 jahre 7 monate
-
Led the CLARIFY project to Accenture's Greater than Award Finals in the Inspiring Growth category, managing technology transfer for a neuro-symbolic query system on biomedical knowledge graphs;
-
Developed systems for relapse prediction and completed the TechStar 2023 leadership program;
-
Created a prototype REST API for AmpliGraph 2, demonstrated in client workshops;
-
Contributed to the EU Commission's CLARIFY H2020 project by delivering a client pilot, collaborating with 11 partners, and authoring deliverables;
-
Proposed four patent ideas, serving as lead author for two;
-
Co-supervised a PhD intern on interpretable Gene-Disease Prediction with GraphML;
-
Served as Virtual Buddy for a new joiner and participated in interview panels;
-
Presented at conferences such as Sketching in Hardware 2022, ESSEC Business School, and EIT Digital Alumni Annual Meeting on XAI and knowledge graphs;
-
Co-presented the COLING-22 Tutorial on Knowledge Graph Embeddings for NLP and authored a Medium Labs blog post on XAIl;
-
Conducted machine learning research on explainable AI for knowledge graph embedding models in precision medicine oncology applications;
-
Developed ExamplE, a novel explanation approach for link prediction, leading to a patent application and a Proof of Concept deployed at Hospital Puerta del Hierro for the CLARIFY H2020 project;
-
Designed experiments for lung cancer relapse prediction and contributed to the development of AmpliGraph 1.4;
-
Co-authored three deliverables to the EU Commission and submitted three patent ideas;
-
Led a human-based evaluation for a consumer goods project, resulting in client presentations and a conference paper;
-
Achieved runner-up status in the Accenture Hackathon: Al4Insurance and participated in the Eco Innovation Challenge;
-
Collaborated with the Human Insight Lab on various initiatives.
Technologien:
- Technologien:
- Databricks
- GNU Octave
- HTML / CSS
- JavaScript
- Data Modeling
- Material-UI
- ChromaDB
- SQL
- MongoDB
- Bash
- CircleCI
- CSS
- Clustering
- CSV
- D3.js
- Cuda
- Data Analytics
- Data Engineering
- React.js
- Unit Testing
- Swagger
- ChatGPT API
- LangChain
- Prompt Engineering
- REST API
- Git
- Python
- Docker
- Flask
- BeautifulSoup
- Pandas
- NumPy
- Team leading
- Data Science
- Pytest
- Machine Learning
- TensorFlow
- Open source
- Scikit-learn
- Streamlit
-
R&D Software Engineer
Nokia - 2 jahre 6 monate
-
Began as a Working Student and received promotions, changing roles while working in a team responsible for developing a component test framework for 5G components (R&D Python Software Developer);
-
Collaborated on time synchronization in Base Transceiver Stations, with main tasks including web application development with machine learning support in Python, hosted in the cloud (R&D Embedded Software Engineer);
-
Contributed by writing new features in C++, fixing software bugs, unit-testing, documenting, and employing best practices of Object-Oriented Programming (OOP) and Test-Driven Development (TDD).
Technologien:
- Technologien:
- GNU Octave
- HTML / CSS
- JavaScript
- Jenkins
- SQL
- MongoDB
- Bash
- CSS
- Clustering
- CSV
- Cuda
- Data Analytics
- Data Engineering
- Unit Testing
- Django
- C++
- REST API
- Git
- Python
- Docker
- Flask
- Pandas
- NumPy
- Data Science
- Agile
- Pytest
- TensorFlow
- Embedded systems
-
Ausbildung
MSc.Data Science
Royal Institute of Technology (KTH) · 2018 - 2020
MSc.Data Science
Cote d'Azure University · 2017 - 2019
BSc.Control Engineering and Robotics
Wroclaw University of Technology · 2012 - 2016
Finden Sie Ihren nächsten Entwickler innerhalb von Tagen, nicht Monaten
In einem kurzen 25-minütigen Gespräch würden wir gerne:
- Auf Ihren Bedarf bezüglich des Recruitments von Software-Entwicklern eingehen
- Unseren Prozess vorstellen und somit wie wir Sie mit talentierten und geprüften Kandidaten aus unserem Netzwerk zusammenbringen können
- Die nächsten Schritte besprechen, um den richtigen Kandidaten zu finden - oft in weniger als einer Woche