Adrianna J.

Machine Learning Engineer

Adrianna ist eine erfahrene Entwicklerin für maschinelles Lernen mit sieben Jahren Erfahrung in den Bereichen Biowissenschaften, Beratung, Konsumgüter, Gesundheitswesen und Telekommunikation.

Derzeit arbeitet sie als Technology Research Associate Principal und verfügt über Kenntnisse in Python, TensorFlow, SPARQL, Stardog, AmpliGraph, Scikit-Learn, Docker, Streamlit und Git.

Mit vier Jahren spezialisierter Erfahrung im Bereich des maschinellen Lernens von Graphen hat Adrianna wichtige Beiträge zu Projekten wie CLARIFY geleistet, wo sie Experimente zum maschinellen Lernen leitete, umfassende Bewertungen durchführte und die Bereitstellung von Lösungen für Krankenhäuser verwaltete.

Sie hat einen Bachelor-Abschluss in Steuerungstechnik und Robotik sowie einen doppelten Master-Abschluss in Data Science mit dem Nebenfach Entrepreneurship von EIT Digital, was ihr starkes technisches Fundament und ihre unternehmerische Denkweise unterstreicht.

Hauptkompetenz
  • LaTeX
    LaTeX 8 Jahre
  • Databricks
    Databricks 4 Jahre
  • GNU Octave
    GNU Octave 5 Jahre
Andere Fähigkeiten
  • Matlab
    Matlab 6 Jahre
  • REST API
    REST API 6 Jahre
  • jQuery
    jQuery 5 Jahre
Adrianna
Adrianna J.

Ireland

Erste Schritte

Ausgewählte Erfahrung

Beschäftigung

  • Technology Research Associate Principal

    Accenture - 4 jahre 7 monate

    • Led the CLARIFY project to Accenture's Greater than Award Finals in the Inspiring Growth category, managing technology transfer for a neuro-symbolic query system on biomedical knowledge graphs;

    • Developed systems for relapse prediction and completed the TechStar 2023 leadership program;

    • Created a prototype REST API for AmpliGraph 2, demonstrated in client workshops;

    • Contributed to the EU Commission's CLARIFY H2020 project by delivering a client pilot, collaborating with 11 partners, and authoring deliverables;

    • Proposed four patent ideas, serving as lead author for two;

    • Co-supervised a PhD intern on interpretable Gene-Disease Prediction with GraphML;

    • Served as Virtual Buddy for a new joiner and participated in interview panels;

    • Presented at conferences such as Sketching in Hardware 2022, ESSEC Business School, and EIT Digital Alumni Annual Meeting on XAI and knowledge graphs;

    • Co-presented the COLING-22 Tutorial on Knowledge Graph Embeddings for NLP and authored a Medium Labs blog post on XAIl;

    • Conducted machine learning research on explainable AI for knowledge graph embedding models in precision medicine oncology applications;

    • Developed ExamplE, a novel explanation approach for link prediction, leading to a patent application and a Proof of Concept deployed at Hospital Puerta del Hierro for the CLARIFY H2020 project;

    • Designed experiments for lung cancer relapse prediction and contributed to the development of AmpliGraph 1.4;

    • Co-authored three deliverables to the EU Commission and submitted three patent ideas;

    • Led a human-based evaluation for a consumer goods project, resulting in client presentations and a conference paper;

    • Achieved runner-up status in the Accenture Hackathon: Al4Insurance and participated in the Eco Innovation Challenge;

    • Collaborated with the Human Insight Lab on various initiatives.

    Technologien:

    • Technologien:
    • Databricks Databricks
    • GNU Octave GNU Octave
    • HTML / CSS
    • JavaScript JavaScript
    • Data Modeling
    • Material-UI Material-UI
    • ChromaDB ChromaDB
    • SQL SQL
    • MongoDB MongoDB
    • Bash Bash
    • CircleCI CircleCI
    • CSS CSS
    • Clustering
    • CSV
    • D3.js D3.js
    • Cuda Cuda
    • Data Analytics
    • Data Engineering
    • React.js React.js
    • Unit Testing
    • Swagger Swagger
    • ChatGPT API ChatGPT API
    • LangChain LangChain
    • Prompt Engineering
    • REST API REST API
    • Git Git
    • Python Python
    • Docker Docker
    • Flask Flask
    • BeautifulSoup BeautifulSoup
    • Pandas Pandas
    • NumPy NumPy
    • Team leading
    • Data Science
    • Pytest Pytest
    • Machine Learning Machine Learning
    • TensorFlow TensorFlow
    • Open source Open source
    • Scikit-learn Scikit-learn
    • Streamlit Streamlit
  • R&D Software Engineer

    Nokia - 2 jahre 6 monate

    • Began as a Working Student and received promotions, changing roles while working in a team responsible for developing a component test framework for 5G components (R&D Python Software Developer);

    • Collaborated on time synchronization in Base Transceiver Stations, with main tasks including web application development with machine learning support in Python, hosted in the cloud (R&D Embedded Software Engineer);

    • Contributed by writing new features in C++, fixing software bugs, unit-testing, documenting, and employing best practices of Object-Oriented Programming (OOP) and Test-Driven Development (TDD).

    Technologien:

    • Technologien:
    • GNU Octave GNU Octave
    • HTML / CSS
    • JavaScript JavaScript
    • Jenkins Jenkins
    • SQL SQL
    • MongoDB MongoDB
    • Bash Bash
    • CSS CSS
    • Clustering
    • CSV
    • Cuda Cuda
    • Data Analytics
    • Data Engineering
    • Unit Testing
    • Django Django
    • C++ C++
    • REST API REST API
    • Git Git
    • Python Python
    • Docker Docker
    • Flask Flask
    • Pandas Pandas
    • NumPy NumPy
    • Data Science
    • Agile Agile
    • Pytest Pytest
    • TensorFlow TensorFlow
    • Embedded systems

Ausbildung

  • MSc.Data Science

    Royal Institute of Technology (KTH) · 2018 - 2020

  • MSc.Data Science

    Cote d'Azure University · 2017 - 2019

  • BSc.Control Engineering and Robotics

    Wroclaw University of Technology · 2012 - 2016

Finden Sie Ihren nächsten Entwickler innerhalb von Tagen, nicht Monaten

In einem kurzen 25-minütigen Gespräch würden wir gerne:

  • Auf Ihren Bedarf bezüglich des Recruitments von Software-Entwicklern eingehen
  • Unseren Prozess vorstellen und somit wie wir Sie mit talentierten und geprüften Kandidaten aus unserem Netzwerk zusammenbringen können
  • Die nächsten Schritte besprechen, um den richtigen Kandidaten zu finden - oft in weniger als einer Woche

Unterhalten wir uns