Andranik U.

Machine Learning Engineer

Andranik is a highly skilled Machine Learning/MLOps Engineer with six years of extensive experience in the commercial sector. His career encompasses roles as a research analyst, data expert, and educator, showcasing his diverse expertise across various industries.

Andranik excels in designing and deploying machine learning models and has demonstrated his ability to address complex business challenges using advanced Google Cloud technologies. Among his notable achievements, Andranik's proudest project involved overcoming significant obstacles to deliver a solution that had a substantial impact in its application area.

Hauptkompetenz
  • Computer Vision 6 Jahre
  • Data Engineering 4 Jahre
  • OpenCV
    OpenCV 6 Jahre
Andere Fähigkeiten
  • Kubeflow
    Kubeflow 3 Jahre
  • Kubernetes
    Kubernetes 3 Jahre
  • ChatGPT API
    ChatGPT API 2 Jahre
Andranik
Andranik U.

Armenia

Erste Schritte

Ausgewählte Erfahrung

Beschäftigung

  • Machine Learning Engineer (MLOps)

    Sportion AM - 3 jahre 9 monate

    • Conducts research to identify suitable machine learning algorithms and tools for specific applications.
    • Designs, builds and deploys machine learning models tailored to address diverse business challenges.
    • Utilizes Google Cloud technologies to develop innovative solutions and enhance the efficiency of machine learning projects.
    • Applies in-depth knowledge of established machine learning models and techniques to create effective and reliable solutions for various industry problems.

    Technologien:

    • Technologien:
    • Data Engineering
    • Kubeflow Kubeflow
    • MLOps
    • Machine Learning Machine Learning
    • Python Python
    • NumPy NumPy
    • Pandas Pandas
    • Scikit-learn Scikit-learn
    • Google Cloud Google Cloud
  • Research Scientist

    DataFoundry - 2 jahre

    • Deploys, monitors, and tests machine learning models, ensuring their seamless integration into operational systems.
    • Develops APIs for machine learning models, enabling efficient communication and utilization of the models in diverse applications.
    • Specializes in real-time drug name misspelling generation, Twitter scraping, and sentiment analysis, leveraging expertise in Python, JSON, web scraping, and natural language processing (NLP).
    • Led the development of a health-related semantic classification system using text distance metrics, Python, and JSON, allowing for accurate identification of potential risks associated with specific medications by analyzing adverse drug effect tweets. This solution is valuable for pharmacovigilance and drug safety monitoring.
    • Participated in a Kaggle competition and developed an API for heart disease classification using Python and Flask.
    • Trained machine learning models to classify heart disease based on medical parameters, offering healthcare professionals a quick and reliable tool for assessing the likelihood of heart disease in patients.

    Technologien:

    • Technologien:
    • Python Python
    • NumPy NumPy
    • Pandas Pandas
    • Scikit-learn Scikit-learn
    • TensorFlow TensorFlow
  • Data Expert - Software Engineer

    cognaize - 6 monate

    • Collaborates on the development of internal management tools using Python, focusing on API development for seamless functionality.
    • Proficiently manipulates Excel/CSV, PDF, and JSON files, demonstrating expertise in document engineering using Python scripting.
    • Contributes to enhancing data processing and management workflows through effective file manipulation techniques.
    • Ensures accuracy and efficiency in file handling processes, enabling streamlined data operations within the organization.

    Technologien:

    • Technologien:
    • Python Python
    • NumPy NumPy
    • Pandas Pandas

Ausbildung

  • MSc.Bioinformatics

    Yerevan State University · 2016 - 2018

  • BSc.Bioinformatics

    Yerevan State University · 2012 - 2016

Finden Sie Ihren nächsten Entwickler innerhalb von Tagen, nicht Monaten

In einem kurzen 25-minütigen Gespräch würden wir gerne:

  • Auf Ihren Bedarf bezüglich des Recruitments von Software-Entwicklern eingehen
  • Unseren Prozess vorstellen und somit wie wir Sie mit talentierten und geprüften Kandidaten aus unserem Netzwerk zusammenbringen können
  • Die nächsten Schritte besprechen, um den richtigen Kandidaten zu finden - oft in weniger als einer Woche

Unterhalten wir uns