Fares A.
Data Engineer
Fares is a highly skilled and dedicated Senior Data Engineer renowned for his expertise in designing, developing, and deploying ETL/ELT processes and data warehousing solutions across diverse industries.
With a comprehensive background spanning both cloud technologies and on-premises solutions, Fares has spearheaded numerous data integration projects for esteemed clients, including Western Union, Amplitude, and the Egyptian Credit Bureau.
As a lifelong learner with multiple certifications, Fares remains committed to utilizing his analytical prowess and technical proficiency to translate data into actionable insights and strategic business outcomes.
Hauptkompetenz
- SSIS 4 Jahre
- T-SQL 4 Jahre
- Teradata 4 Jahre
Andere Fähigkeiten
- Integration Testing 4 Jahre
- Database testing 4 Jahre
- CSV 4 Jahre
Ausgewählte Erfahrung
Beschäftigung
Consultant Mid Senior Data Enginner
BlueCloud - 1 jahr 3 monate
- Designed, developed, & deployed the ETL/ELT using cloud technologies resulting in the creation of a
comprehensive warehouse on Snowflake in multiple projects:
- Western Union, USA.
- Amplitude, USA.
Technologien:
- Technologien:
- dbt
- SQLAlchemy
- SSIS
- T-SQL
- VSCode
- JSON
- Google Cloud
- Database testing
- CSV
- Clustering
- Azure Cloud
- Agile
- Microsoft Power BI
- Tableau
- Snowflake
- Azure
- Apache Airflow
- ELT
- ETL
- SQL
- Python
- Designed, developed, & deployed the ETL/ELT using cloud technologies resulting in the creation of a
comprehensive warehouse on Snowflake in multiple projects:
Mid Senior Data Engineer
Unilever Mashreq - 1 jahr 10 monate
- Managed the maintenance of data from thousands of distributors across the MENA and Gulf regions, ensuring a continuous and reliable flow into the data lake house residing on Azure ADLS Gen2;
- Played a pivotal role in guaranteeing the quality and cleanliness of data for business users, facilitating informed decision-making.
Technologien:
- Technologien:
- SQLAlchemy
- SSIS
- T-SQL
- VSCode
- Matplotlib
- Database testing
- Data Science
- CSV
- BeautifulSoup
- Azure Cloud
- Azure Blob storage
- SAP ABAP
- Fact Data Modeling
- Data Modeling
- Microsoft Power BI
- Apache Spark
- Databricks
- Azure
- Apache Airflow
- Azure Data Factory
- ELT
- ETL
- Python
Associate Data Engineer / Data Engineer
Teradata Middle East - 2 jahre 5 monate
- Independently designed, developed, & deployed the ETL process resulting in the creation of a comprehensive warehouse in multiple projects:
- Egyptian Credit Bureau's I-Score, Egypt.
- Transport General Authority, Saudi Arabia.
- Djezzy Telecom, Algeria.
- Successfully managed the ETL & ELT processes for the largest data project in Egypt (Egypt’s digital transformation), involving the acquisition of data from 151 sources.
- Expertly tested & supported ETL processes from data sources to Data Warehouse & Data Marts, ensuring data accuracy & completeness.
Technologien:
- Technologien:
- SQLAlchemy
- SSAS
- T-SQL
- Teradata
- VSCode
- Matplotlib
- Integration Testing
- Hadoop
- Database testing
- CSV
- BeautifulSoup
- Apache NiFi
- Microsoft Power BI
- Apache Spark
- Apache Airflow
- SQL
- Python
Part-time Data Analytics Session Lead
Udacity - 1 jahr 2 monate
- Successfully managed Connect sessions with high-performing students while adhering to Udacity guidelines, providing personalized guidance & support to help students excel in the "Data Science & AI" Nanodegree program.
Technologien:
- Technologien:
- PyTorch
- SQLAlchemy
- VSCode
- Matplotlib
- JSON
- Scikit-learn
- Database testing
- Data Science
- CSV
- Data Analytics
- SciPy
- Python
Ausbildung
BSc.Faculty of Engineering
Alexandria University · 2015 - 2020
Finden Sie Ihren nächsten Entwickler innerhalb von Tagen, nicht Monaten
In einem kurzen 25-minütigen Gespräch würden wir gerne:
- Auf Ihren Bedarf bezüglich des Recruitments von Software-Entwicklern eingehen
- Unseren Prozess vorstellen und somit wie wir Sie mit talentierten und geprüften Kandidaten aus unserem Netzwerk zusammenbringen können
- Die nächsten Schritte besprechen, um den richtigen Kandidaten zu finden - oft in weniger als einer Woche